Three Long Wave Asymptotic Regimes for the Nonlinear-schrödinger Equation

نویسنده

  • David CHIRON
چکیده

We survey some recent results related to three long wave asymptotic regimes for the Nonlinear-Schrödinger Equation: the Euler regime corresponding to the WKB method, the linear wave regime and finally the KdV/KP-I asymptotic dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

On Asymptotic Stability of Solitary Waves in Discrete Schrödinger Equation Coupled to Nonlinear Oscillator

The long-time asymptotics is analyzed for finite energy solutions of the 1D discrete Schrödinger equation coupled to a nonlinear oscillator. The coupled system is invariant with respect to the phase rotation group U(1). For initial states close to a solitary wave, the solution converges to a sum of another solitary wave and dispersive wave which is a solution to the free Schrödinger equation. T...

متن کامل

Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds

We consider the nonlinear Schrödinger equation with a pure power repulsive nonlinearity on Schwarzschild manifolds. Equations of this type arise when a nonlinear wave equation on a Schwarzschild manifold is written in Hamiltonian form, cf. [2], [10]. For radial solutions with sufficiently localized initial data, we obtain global existence, L estimates, and the existence and asymptotic completen...

متن کامل

Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrödinger equation

Abstract A non-integrable, variable coefficient nonlinear Schrödinger equation which governs the nonlinear pulse propagation in an inhomogeneous medium is considered. The same equation is also applicable to optical pulse propagation in averaged, dispersion-managed optical fiber systems, or fiber systems with phase modulation and pulse compression. Multi-scale asymptotic techniques are employed ...

متن کامل

Scattering and small data completeness for the critical nonlinear Schrödinger equation

We prove Asymptotic Completeness of one dimensional NLS with long range nonlinearities. We also prove existence and expansion of asymptotic solutions with large data at infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013